222 lines
6.5 KiB
Arduino
222 lines
6.5 KiB
Arduino
|
|
||
|
/*
|
||
|
* Skytracker by Nick Touran for ESP8266 and Stepper Motors
|
||
|
*
|
||
|
* partofthething.com
|
||
|
*
|
||
|
* This accelerates the motor to correct the tangent error. It can rewind too!
|
||
|
*
|
||
|
* Motors are 28BYJ-48 5V + ULN2003 Driver Board from Amazon
|
||
|
* Hook up power and ground and then hook inputs 1-4 up to GPIO pins.
|
||
|
*
|
||
|
* See Also: http://www.raspberrypi-spy.co.uk/2012/07/stepper-motor-control-in-python/
|
||
|
* This motor has a 1:64 gear reduction ratio and a stride angle of 5.625 deg (1/64th of a circle).
|
||
|
*
|
||
|
* So it takes 64*64 = 4096 single steps for one full rotation, or 2048 double-steps.
|
||
|
* with 3 ms timing, double-stepping can do a full rotation in 2048*0.003 = 6.144 seconds
|
||
|
* so that's a whopping 1/6.144 * 60 = 9.75 RPM. But it has way more torque than I expected.
|
||
|
*
|
||
|
* Can get 2ms timing going with double stepping on ESP8266. Pretty fast!
|
||
|
* Should power it off of external 5V.
|
||
|
*
|
||
|
* Shaft diameter is 5mm with a 3mm inner key thing. Mounting holes are 35mm apart.
|
||
|
*
|
||
|
*/
|
||
|
|
||
|
|
||
|
#define NUM_PINS 4
|
||
|
#define NUM_STEPS 8
|
||
|
#define RADS_PER_SEC 7.292115e-05
|
||
|
#define LENGTH_CM 28.884 // fill in with precise measured value
|
||
|
// For theta zero, I used relative measurement between two boards w/ level.
|
||
|
// Got 0.72 degrees, which is 0.012566 radians
|
||
|
#define THETA0 0.012566 // fill in with angle at fully closed position (radians)
|
||
|
#define ROTATIONS_PER_CM 7.8740157 // 1/4-20 thread
|
||
|
#define DOUBLESTEPS_PER_ROTATION 2048.0
|
||
|
#define CYCLES_PER_SECOND 80000000
|
||
|
|
||
|
//modes
|
||
|
#define NORMAL 0
|
||
|
#define REWINDING 1
|
||
|
#define STOPPED 2
|
||
|
|
||
|
|
||
|
int allPins[NUM_PINS] = {D1, D2, D3, D4};
|
||
|
int MODE_PIN = D7;
|
||
|
|
||
|
// from manufacturers datasheet
|
||
|
int STEPPER_SEQUENCE[NUM_STEPS][NUM_PINS] = {{1,0,0,1},
|
||
|
{1,0,0,0},
|
||
|
{1,1,0,0},
|
||
|
{0,1,0,0},
|
||
|
{0,1,1,0},
|
||
|
{0,0,1,0},
|
||
|
{0,0,1,1},
|
||
|
{0,0,0,1}};
|
||
|
|
||
|
int step_delta;
|
||
|
int step_num = 0;
|
||
|
double total_seconds = 0.0;
|
||
|
long totalsteps = 0;
|
||
|
double step_interval_s=0.001;
|
||
|
int *current_step;
|
||
|
volatile unsigned long next; // next time to trigger callback
|
||
|
volatile unsigned long now; // volatile keyword required when things change in callbacks
|
||
|
volatile unsigned long last_toggle; // for debounce
|
||
|
volatile short current_mode=NORMAL;
|
||
|
bool autostop=true; // hack for allowing manual rewind at boot
|
||
|
|
||
|
float ypt(float ts) {
|
||
|
// bolt insertion rate in cm/s: y'(t)
|
||
|
// Note, if you run this for ~359 minutes, it goes to infinity!!
|
||
|
return LENGTH_CM * RADS_PER_SEC/pow(cos(THETA0 + RADS_PER_SEC * ts),2);
|
||
|
}
|
||
|
|
||
|
void inline step_motor(void) {
|
||
|
/* This is the callback function that gets called when the timer
|
||
|
* expires. It moves the motor, updates lists, recomputes
|
||
|
* the step interval based on the current tangent error,
|
||
|
* and sets a new timer.
|
||
|
*/
|
||
|
switch(current_mode) {
|
||
|
case NORMAL:
|
||
|
step_interval_s = 1.0/(ROTATIONS_PER_CM * ypt(total_seconds)* 2 * DOUBLESTEPS_PER_ROTATION);
|
||
|
step_delta = 1; // single steps while filming for smoothest operation and highest torque
|
||
|
step_num %= NUM_STEPS;
|
||
|
break;
|
||
|
case REWINDING:
|
||
|
// fast rewind
|
||
|
step_interval_s = 0.0025; // can often get 2ms but gets stuck sometimes.
|
||
|
step_delta = -2; // double steps going backwards for speed.
|
||
|
if (step_num<0) {
|
||
|
step_num+=NUM_STEPS; // modulus works here in Python it goes negative in C.
|
||
|
}
|
||
|
break;
|
||
|
case STOPPED:
|
||
|
step_interval_s = 0.2; // wait a bit to conserve power.
|
||
|
break;
|
||
|
}
|
||
|
|
||
|
if (current_mode!=STOPPED) {
|
||
|
total_seconds += step_interval_s; // required for tangent error
|
||
|
current_step = STEPPER_SEQUENCE[step_num];
|
||
|
do_step(current_step);
|
||
|
step_num += step_delta; // double-steppin'
|
||
|
totalsteps += step_delta;
|
||
|
}
|
||
|
|
||
|
// Serial.println(totalsteps);
|
||
|
// Before setting the next timer, subtract out however many
|
||
|
// clock cycles were burned doing all the work above.
|
||
|
now = ESP.getCycleCount();
|
||
|
next = now + step_interval_s * CYCLES_PER_SECOND - (now-next); // will auto-rollover.
|
||
|
timer0_write(next); // see you next time!
|
||
|
}
|
||
|
|
||
|
void do_step(int *current_step) {
|
||
|
/* apply a single step of the stepper motor on its pins. */
|
||
|
for (int i=0;i<NUM_PINS+1;i++) {
|
||
|
if (current_step[i] == 1) {
|
||
|
digitalWrite(allPins[i], HIGH);
|
||
|
}
|
||
|
else {
|
||
|
digitalWrite(allPins[i], LOW);
|
||
|
}
|
||
|
}
|
||
|
}
|
||
|
|
||
|
void setup() {
|
||
|
Serial.begin(115200);
|
||
|
setup_gpio();
|
||
|
setup_timer();
|
||
|
|
||
|
|
||
|
// Convenient Feature: Hold button down during boot to do a manual rewind.
|
||
|
// Press button again to set new zero point.
|
||
|
int buttonUp = digitalRead(MODE_PIN);
|
||
|
if(not buttonUp) {
|
||
|
Serial.println("Manual REWIND!");
|
||
|
autostop=false;
|
||
|
current_mode=REWINDING;
|
||
|
}
|
||
|
}
|
||
|
|
||
|
void setup_timer() {
|
||
|
noInterrupts();
|
||
|
timer0_isr_init();
|
||
|
timer0_attachInterrupt(step_motor); // call this function when timer expires
|
||
|
next=ESP.getCycleCount()+1000;
|
||
|
timer0_write(next); // do first call in 1000 clock cycles.
|
||
|
interrupts();
|
||
|
}
|
||
|
|
||
|
void setup_gpio() {
|
||
|
|
||
|
for (int i=0;i<NUM_PINS+1;i++) {
|
||
|
pinMode(allPins[i], OUTPUT);
|
||
|
}
|
||
|
all_pins_off();
|
||
|
|
||
|
// Setup toggle button for some user input.
|
||
|
pinMode(MODE_PIN, INPUT_PULLUP);
|
||
|
attachInterrupt(digitalPinToInterrupt(MODE_PIN), toggle_mode, FALLING);
|
||
|
}
|
||
|
|
||
|
void all_pins_off() {
|
||
|
for (int i=0;i<NUM_PINS+1;i++) {
|
||
|
digitalWrite(allPins[i], LOW);
|
||
|
}
|
||
|
}
|
||
|
|
||
|
void toggle_mode() {
|
||
|
/* We have several modes that we can toggle between with a button,
|
||
|
* NORMAL, REWIND, and STOPPED.
|
||
|
*/
|
||
|
if(ESP.getCycleCount() - last_toggle < 0.2*CYCLES_PER_SECOND) //debounce
|
||
|
{
|
||
|
return;
|
||
|
}
|
||
|
if (current_mode == REWINDING){
|
||
|
Serial.println("STOPPING");
|
||
|
current_mode = STOPPED;
|
||
|
all_pins_off();
|
||
|
if (not autostop) {
|
||
|
// Reset things after a manual rewind.
|
||
|
step_num = 0;
|
||
|
total_seconds = 0.0;
|
||
|
totalsteps=0;
|
||
|
autostop=true;
|
||
|
}
|
||
|
}
|
||
|
else if (current_mode == NORMAL) {
|
||
|
Serial.println("Rewinding.");
|
||
|
current_mode = REWINDING;
|
||
|
}
|
||
|
else {
|
||
|
Serial.println("Restarting.");
|
||
|
current_mode = NORMAL;
|
||
|
}
|
||
|
last_toggle = ESP.getCycleCount();
|
||
|
}
|
||
|
|
||
|
|
||
|
void loop() {
|
||
|
|
||
|
if(current_mode == REWINDING) {
|
||
|
// we've reached the starting point. stop rewinding.
|
||
|
if(totalsteps < 1 and autostop==true){
|
||
|
Serial.println("Ending the rewind and stopping.");
|
||
|
current_mode=STOPPED;
|
||
|
all_pins_off();
|
||
|
total_seconds = 0.0;
|
||
|
}
|
||
|
}
|
||
|
else {
|
||
|
// no-op. just wait for interrupts.
|
||
|
yield();
|
||
|
}
|
||
|
}
|
||
|
|
||
|
|
||
|
|