Clean up files
This commit is contained in:
parent
4210c00b6a
commit
1b451ad809
12
boot.py
12
boot.py
@ -1,2 +1,10 @@
|
||||
# boot.py -- run on boot-up
|
||||
|
||||
# This file is executed on every boot (including wake-boot from deepsleep)
|
||||
#import esp
|
||||
#esp.osdebug(None)
|
||||
import os, machine
|
||||
#os.dupterm(None, 1) # disable REPL on UART(0)
|
||||
import gc
|
||||
import webrepl
|
||||
|
||||
webrepl.start()
|
||||
gc.collect()
|
||||
|
@ -1,221 +0,0 @@
|
||||
|
||||
/*
|
||||
* Skytracker by Nick Touran for ESP8266 and Stepper Motors
|
||||
*
|
||||
* partofthething.com
|
||||
*
|
||||
* This accelerates the motor to correct the tangent error. It can rewind too!
|
||||
*
|
||||
* Motors are 28BYJ-48 5V + ULN2003 Driver Board from Amazon
|
||||
* Hook up power and ground and then hook inputs 1-4 up to GPIO pins.
|
||||
*
|
||||
* See Also: http://www.raspberrypi-spy.co.uk/2012/07/stepper-motor-control-in-python/
|
||||
* This motor has a 1:64 gear reduction ratio and a stride angle of 5.625 deg (1/64th of a circle).
|
||||
*
|
||||
* So it takes 64*64 = 4096 single steps for one full rotation, or 2048 double-steps.
|
||||
* with 3 ms timing, double-stepping can do a full rotation in 2048*0.003 = 6.144 seconds
|
||||
* so that's a whopping 1/6.144 * 60 = 9.75 RPM. But it has way more torque than I expected.
|
||||
*
|
||||
* Can get 2ms timing going with double stepping on ESP8266. Pretty fast!
|
||||
* Should power it off of external 5V.
|
||||
*
|
||||
* Shaft diameter is 5mm with a 3mm inner key thing. Mounting holes are 35mm apart.
|
||||
*
|
||||
*/
|
||||
|
||||
|
||||
#define NUM_PINS 4
|
||||
#define NUM_STEPS 8
|
||||
#define RADS_PER_SEC 7.292115e-05
|
||||
#define LENGTH_CM 28.884 // fill in with precise measured value
|
||||
// For theta zero, I used relative measurement between two boards w/ level.
|
||||
// Got 0.72 degrees, which is 0.012566 radians
|
||||
#define THETA0 0.012566 // fill in with angle at fully closed position (radians)
|
||||
#define ROTATIONS_PER_CM 7.8740157 // 1/4-20 thread
|
||||
#define DOUBLESTEPS_PER_ROTATION 2048.0
|
||||
#define CYCLES_PER_SECOND 80000000
|
||||
|
||||
//modes
|
||||
#define NORMAL 0
|
||||
#define REWINDING 1
|
||||
#define STOPPED 2
|
||||
|
||||
|
||||
int allPins[NUM_PINS] = {D1, D2, D3, D4};
|
||||
int MODE_PIN = D7;
|
||||
|
||||
// from manufacturers datasheet
|
||||
int STEPPER_SEQUENCE[NUM_STEPS][NUM_PINS] = {{1,0,0,1},
|
||||
{1,0,0,0},
|
||||
{1,1,0,0},
|
||||
{0,1,0,0},
|
||||
{0,1,1,0},
|
||||
{0,0,1,0},
|
||||
{0,0,1,1},
|
||||
{0,0,0,1}};
|
||||
|
||||
int step_delta;
|
||||
int step_num = 0;
|
||||
double total_seconds = 0.0;
|
||||
long totalsteps = 0;
|
||||
double step_interval_s=0.001;
|
||||
int *current_step;
|
||||
volatile unsigned long next; // next time to trigger callback
|
||||
volatile unsigned long now; // volatile keyword required when things change in callbacks
|
||||
volatile unsigned long last_toggle; // for debounce
|
||||
volatile short current_mode=NORMAL;
|
||||
bool autostop=true; // hack for allowing manual rewind at boot
|
||||
|
||||
float ypt(float ts) {
|
||||
// bolt insertion rate in cm/s: y'(t)
|
||||
// Note, if you run this for ~359 minutes, it goes to infinity!!
|
||||
return LENGTH_CM * RADS_PER_SEC/pow(cos(THETA0 + RADS_PER_SEC * ts),2);
|
||||
}
|
||||
|
||||
void inline step_motor(void) {
|
||||
/* This is the callback function that gets called when the timer
|
||||
* expires. It moves the motor, updates lists, recomputes
|
||||
* the step interval based on the current tangent error,
|
||||
* and sets a new timer.
|
||||
*/
|
||||
switch(current_mode) {
|
||||
case NORMAL:
|
||||
step_interval_s = 1.0/(ROTATIONS_PER_CM * ypt(total_seconds)* 2 * DOUBLESTEPS_PER_ROTATION);
|
||||
step_delta = 1; // single steps while filming for smoothest operation and highest torque
|
||||
step_num %= NUM_STEPS;
|
||||
break;
|
||||
case REWINDING:
|
||||
// fast rewind
|
||||
step_interval_s = 0.0025; // can often get 2ms but gets stuck sometimes.
|
||||
step_delta = -2; // double steps going backwards for speed.
|
||||
if (step_num<0) {
|
||||
step_num+=NUM_STEPS; // modulus works here in Python it goes negative in C.
|
||||
}
|
||||
break;
|
||||
case STOPPED:
|
||||
step_interval_s = 0.2; // wait a bit to conserve power.
|
||||
break;
|
||||
}
|
||||
|
||||
if (current_mode!=STOPPED) {
|
||||
total_seconds += step_interval_s; // required for tangent error
|
||||
current_step = STEPPER_SEQUENCE[step_num];
|
||||
do_step(current_step);
|
||||
step_num += step_delta; // double-steppin'
|
||||
totalsteps += step_delta;
|
||||
}
|
||||
|
||||
// Serial.println(totalsteps);
|
||||
// Before setting the next timer, subtract out however many
|
||||
// clock cycles were burned doing all the work above.
|
||||
now = ESP.getCycleCount();
|
||||
next = now + step_interval_s * CYCLES_PER_SECOND - (now-next); // will auto-rollover.
|
||||
timer0_write(next); // see you next time!
|
||||
}
|
||||
|
||||
void do_step(int *current_step) {
|
||||
/* apply a single step of the stepper motor on its pins. */
|
||||
for (int i=0;i<NUM_PINS+1;i++) {
|
||||
if (current_step[i] == 1) {
|
||||
digitalWrite(allPins[i], HIGH);
|
||||
}
|
||||
else {
|
||||
digitalWrite(allPins[i], LOW);
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
void setup() {
|
||||
Serial.begin(115200);
|
||||
setup_gpio();
|
||||
setup_timer();
|
||||
|
||||
|
||||
// Convenient Feature: Hold button down during boot to do a manual rewind.
|
||||
// Press button again to set new zero point.
|
||||
int buttonUp = digitalRead(MODE_PIN);
|
||||
if(not buttonUp) {
|
||||
Serial.println("Manual REWIND!");
|
||||
autostop=false;
|
||||
current_mode=REWINDING;
|
||||
}
|
||||
}
|
||||
|
||||
void setup_timer() {
|
||||
noInterrupts();
|
||||
timer0_isr_init();
|
||||
timer0_attachInterrupt(step_motor); // call this function when timer expires
|
||||
next=ESP.getCycleCount()+1000;
|
||||
timer0_write(next); // do first call in 1000 clock cycles.
|
||||
interrupts();
|
||||
}
|
||||
|
||||
void setup_gpio() {
|
||||
|
||||
for (int i=0;i<NUM_PINS+1;i++) {
|
||||
pinMode(allPins[i], OUTPUT);
|
||||
}
|
||||
all_pins_off();
|
||||
|
||||
// Setup toggle button for some user input.
|
||||
pinMode(MODE_PIN, INPUT_PULLUP);
|
||||
attachInterrupt(digitalPinToInterrupt(MODE_PIN), toggle_mode, FALLING);
|
||||
}
|
||||
|
||||
void all_pins_off() {
|
||||
for (int i=0;i<NUM_PINS+1;i++) {
|
||||
digitalWrite(allPins[i], LOW);
|
||||
}
|
||||
}
|
||||
|
||||
void toggle_mode() {
|
||||
/* We have several modes that we can toggle between with a button,
|
||||
* NORMAL, REWIND, and STOPPED.
|
||||
*/
|
||||
if(ESP.getCycleCount() - last_toggle < 0.2*CYCLES_PER_SECOND) //debounce
|
||||
{
|
||||
return;
|
||||
}
|
||||
if (current_mode == REWINDING){
|
||||
Serial.println("STOPPING");
|
||||
current_mode = STOPPED;
|
||||
all_pins_off();
|
||||
if (not autostop) {
|
||||
// Reset things after a manual rewind.
|
||||
step_num = 0;
|
||||
total_seconds = 0.0;
|
||||
totalsteps=0;
|
||||
autostop=true;
|
||||
}
|
||||
}
|
||||
else if (current_mode == NORMAL) {
|
||||
Serial.println("Rewinding.");
|
||||
current_mode = REWINDING;
|
||||
}
|
||||
else {
|
||||
Serial.println("Restarting.");
|
||||
current_mode = NORMAL;
|
||||
}
|
||||
last_toggle = ESP.getCycleCount();
|
||||
}
|
||||
|
||||
|
||||
void loop() {
|
||||
|
||||
if(current_mode == REWINDING) {
|
||||
// we've reached the starting point. stop rewinding.
|
||||
if(totalsteps < 1 and autostop==true){
|
||||
Serial.println("Ending the rewind and stopping.");
|
||||
current_mode=STOPPED;
|
||||
all_pins_off();
|
||||
total_seconds = 0.0;
|
||||
}
|
||||
}
|
||||
else {
|
||||
// no-op. just wait for interrupts.
|
||||
yield();
|
||||
}
|
||||
}
|
||||
|
||||
|
||||
|
@ -1,50 +0,0 @@
|
||||
#define NUM_PINS 4
|
||||
#define NUM_STEPS 8
|
||||
|
||||
int allPins[NUM_PINS] = {D1, D2, D3, D4};
|
||||
|
||||
// from manufacturers datasheet
|
||||
int STEPPER_SEQUENCE[NUM_STEPS][NUM_PINS] = {{1,0,0,1},
|
||||
{1,0,0,0},
|
||||
{1,1,0,0},
|
||||
{0,1,0,0},
|
||||
{0,1,1,0},
|
||||
{0,0,1,0},
|
||||
{0,0,1,1},
|
||||
{0,0,0,1}};
|
||||
int stepNum = 0;
|
||||
|
||||
void setup() {
|
||||
Serial.begin(115200);
|
||||
setup_gpio();
|
||||
}
|
||||
|
||||
void setup_gpio() {
|
||||
for (int i=0;i<NUM_PINS+1;i++) {
|
||||
pinMode(allPins[i], OUTPUT);
|
||||
}
|
||||
all_pins_off();
|
||||
}
|
||||
|
||||
void all_pins_off() {
|
||||
for (int i=0;i<NUM_PINS+1;i++) {
|
||||
digitalWrite(allPins[i], HIGH);
|
||||
}
|
||||
}
|
||||
|
||||
int *currentStep;
|
||||
void loop() {
|
||||
|
||||
currentStep = STEPPER_SEQUENCE[stepNum];
|
||||
for (int i=0;i<NUM_PINS+1;i++) {
|
||||
if (currentStep[i] == 1) {
|
||||
digitalWrite(allPins[i], HIGH);
|
||||
}
|
||||
else {
|
||||
digitalWrite(allPins[i], LOW);
|
||||
}
|
||||
}
|
||||
delay(5);
|
||||
stepNum +=2; // double-stepping. Faster and shakier.
|
||||
stepNum %= NUM_STEPS;
|
||||
}
|
@ -1 +0,0 @@
|
||||
import machine
|
Loading…
Reference in New Issue
Block a user